Synthesis and properties of lignin-highly branched polymeric systems

The innovative and nanotechnologies in the chemical and food industries
4th International Scientific Conference «Chemical Technology and Engineering»: Proceedings – June 26–29th, 2023, Lviv, Ukraine – Lviv: Lviv Polytechnic National University, 2023, pp. 132–135

Authors

First and Last Name Academic degree E-mail Affiliation
Oleksandr Zaichenko Sc.D. azaichenko14 [at] gmail.com Lviv Polytechnic National University
Lviv, Ukraine
Kateryna Volianiuk No kateryna.a.volianiuk [at] lpnu.ua Lviv Polytechnic National University
Lviv, Ukraine
Nataliya Mitina Sc.D. nataliia.y.mitina [at] lpnu.ua Lviv Polytechnic National University
Lviv, Ukraine
Khrystyna Harhay Ph.D. khrystyna.i.harhai [at] lpnu.ua Lviv Polytechnic National University
Lviv, Ukraine
Oleh Izhyk No oleh.b.izhyk [at] lpnu.ua Lviv Polytechnic National University
Lviv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 12.04.2023 - 15:59
Abstract

Branched  water-soluble  surface-active  polymers  based  on  lignin  were  obtained.  A  simple  and  convenient  method  of  modifying  the  natural  polymer  as  a  result  of  low-temperature  radical  polymerization  is  proposed,  which  allows  obtaining  branched  copolymers  with  grafted  chains  of  functional  polymers.  Using  this  synthetic  approach  and changing  the  functional  composition  of  the  grafted copolymer, it is possible to easily adjust the colloidal-chemical properties of lignin-containing polymers. 

References

[1] Liao, J. J., Abd Latif, N. H., Trache, D., Brosse, N., & Hussin, M. H. (2020). Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol., 162, 985-1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168 

[2] Vieira, F. R., Magina, S., Evtuguin, D. V., & Barros-Timmons, A. (2022). Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials, 15(17), 6182. https://doi.org/10.3390/ma15176182 

[3] Tyagi, U., & Sarma, A. K. (2022). Perspectives of biomass based lignin to value added chemicals in biorefineries: challenges, extraction strategies and applications. Biofuel Bioprod Biorefin, 16(6), 1869-1892. https://doi.org/10.1002/bbb.2418 

[4] Sivagurunathan, P., Raj, T., Mohanta, C. S., Semwal, S., Satlewal, A., Gupta, R. P., & Kumar, R. (2021). 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. Chemosphere, 268, 129326. https://doi.org/10.1016/j.chemosphere.2020.129326 

[5] Chung, H., Al-Khouja, A., & Washburn, N. R. (2013). Lignin-based graft copolymers via ATRP and click chemistry. In Green Polymer Chemistry: Biocatalysis and Materials II (pp. 373-391). American Chemical Society. https://doi.org/10.1016/10.1021/bk-2013-1144.ch025 

[6] Liu, W., Zhou, R., Goh, H. L. S., Huang, S., & Lu, X. (2014). From waste to functional additive: toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces, 6(8), 5810-5817. https://doi.org/10.1021/am500642n 

[7] More, A., Elder, T., & Jiang, Z. (2021). A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung, 75(9), 806-823. https://doi.org/10.1515/hf-2020-0165 

[8] Borrero-López, A. M., Valencia, C., & Franco, J. M. (2022). Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes: a review. Polymers, 14(5), 881. https://doi.org/10.3390/polym14050881 

[9] Chung, H., & Washburn, N. R. (2012).  Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces, 4(6), 2840-2846. https://doi.org/10.1021/am300425x 

[10] Kazzaz, A. E., Feizi, Z. H., & Fatehi, P. (2019). Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 21(21), 5714-5752. https://doi.org/10.1039/C9GC02598G 

[11] Meister, J. J., Patil, D. R., Field, L. R., & Nicholson, J. C. (1984). Synthesis and characterization of graft copolymers from lignin and 2‐propenamide. J. Polym. Sci., Polym. Chem. Ed., 22(9), 1963-1980. https://doi.org/10.1002/pol.1984.170220902 

[12] Koshijima, T., & Muraki, E. (1968). Radical grafting on lignin. Part I. Radiation-induced grafting of styrene onto hydrochloric acid lignin. Journal of Polymer Science Part A-1: Polymer Chemistry, 6(6), 1431-1440. https://doi.org/10.1002/pol.1968.150060602  

[13] Kislenko, V. N., & Berlin, A. A. (1996). Kinetics of interaction between water-soluble derivatives of lignin and hydrogen peroxide. Eur. Polym. J., 32(8), 1023-1029. https://doi.org/10.1016/0014-3057(96)00002-X 

[14] Meister, J. J., & Patil, D. R. (1985). Solvent effects and initiation mechanisms for graft polymerization on pine lignin. Macromolecules, 18(8), 1559-1564. https://doi.org/10.1021/ma00150a006 

[15] Bhattacharya, A., & Misra, B. N. (2004). Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci., 29(8), 767-814. https://doi.org/10.1016/j.progpolymsci.2004.05.002 

[16] Abdollahi, M., Mohsenpour, M., Mousavian, S. A., & Varamesh, A. (2020). Synthesis and characterization of multiarm star-shaped water-soluble graft copolymer through atom transfer radical polymerization of acrylamide initiated from bio-based lignin macroinitiator. Wood Sci. Technol., 54, 1569-1585. https://doi.org/10.1007/s00226-020-01231-z 

[17] Messmer, N. R., Guerrini, L. M., & Oliveira, M. P. (2018). Effect of unmodified kraft lignin concentration on the emulsion and miniemulsion copolymerization of styrene with n-butyl acrylate and methacrylic acid to produce polymer hybrid latex. Polym. Adv. Technol., 29(3), 1094-1106. https://doi.org/10.1002/pat.4221  

[18] Ganewatta, M. S., Lokupitiya, H. N., & Tang, C. (2019). Lignin biopolymers in the age of controlled polymerization. Polymers, 11(7), 1176. https://doi.org/10.3390/polym11071176

Official paper