Synthesis and properties of lignin-highly branched polymeric systems
I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license
Branched water-soluble surface-active polymers based on lignin were obtained. A simple and convenient method of modifying the natural polymer as a result of low-temperature radical polymerization is proposed, which allows obtaining branched copolymers with grafted chains of functional polymers. Using this synthetic approach and changing the functional composition of the grafted copolymer, it is possible to easily adjust the colloidal-chemical properties of lignin-containing polymers.
[1] Liao, J. J., Abd Latif, N. H., Trache, D., Brosse, N., & Hussin, M. H. (2020). Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol., 162, 985-1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168
[2] Vieira, F. R., Magina, S., Evtuguin, D. V., & Barros-Timmons, A. (2022). Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials, 15(17), 6182. https://doi.org/10.3390/ma15176182
[3] Tyagi, U., & Sarma, A. K. (2022). Perspectives of biomass based lignin to value added chemicals in biorefineries: challenges, extraction strategies and applications. Biofuel Bioprod Biorefin, 16(6), 1869-1892. https://doi.org/10.1002/bbb.2418
[4] Sivagurunathan, P., Raj, T., Mohanta, C. S., Semwal, S., Satlewal, A., Gupta, R. P., & Kumar, R. (2021). 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. Chemosphere, 268, 129326. https://doi.org/10.1016/j.chemosphere.2020.129326
[5] Chung, H., Al-Khouja, A., & Washburn, N. R. (2013). Lignin-based graft copolymers via ATRP and click chemistry. In Green Polymer Chemistry: Biocatalysis and Materials II (pp. 373-391). American Chemical Society. https://doi.org/10.1016/10.1021/bk-2013-1144.ch025
[6] Liu, W., Zhou, R., Goh, H. L. S., Huang, S., & Lu, X. (2014). From waste to functional additive: toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces, 6(8), 5810-5817. https://doi.org/10.1021/am500642n
[7] More, A., Elder, T., & Jiang, Z. (2021). A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung, 75(9), 806-823. https://doi.org/10.1515/hf-2020-0165
[8] Borrero-López, A. M., Valencia, C., & Franco, J. M. (2022). Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes: a review. Polymers, 14(5), 881. https://doi.org/10.3390/polym14050881
[9] Chung, H., & Washburn, N. R. (2012). Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces, 4(6), 2840-2846. https://doi.org/10.1021/am300425x
[10] Kazzaz, A. E., Feizi, Z. H., & Fatehi, P. (2019). Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 21(21), 5714-5752. https://doi.org/10.1039/C9GC02598G
[11] Meister, J. J., Patil, D. R., Field, L. R., & Nicholson, J. C. (1984). Synthesis and characterization of graft copolymers from lignin and 2‐propenamide. J. Polym. Sci., Polym. Chem. Ed., 22(9), 1963-1980. https://doi.org/10.1002/pol.1984.170220902
[12] Koshijima, T., & Muraki, E. (1968). Radical grafting on lignin. Part I. Radiation-induced grafting of styrene onto hydrochloric acid lignin. Journal of Polymer Science Part A-1: Polymer Chemistry, 6(6), 1431-1440. https://doi.org/10.1002/pol.1968.150060602
[13] Kislenko, V. N., & Berlin, A. A. (1996). Kinetics of interaction between water-soluble derivatives of lignin and hydrogen peroxide. Eur. Polym. J., 32(8), 1023-1029. https://doi.org/10.1016/0014-3057(96)00002-X
[14] Meister, J. J., & Patil, D. R. (1985). Solvent effects and initiation mechanisms for graft polymerization on pine lignin. Macromolecules, 18(8), 1559-1564. https://doi.org/10.1021/ma00150a006
[15] Bhattacharya, A., & Misra, B. N. (2004). Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci., 29(8), 767-814. https://doi.org/10.1016/j.progpolymsci.2004.05.002
[16] Abdollahi, M., Mohsenpour, M., Mousavian, S. A., & Varamesh, A. (2020). Synthesis and characterization of multiarm star-shaped water-soluble graft copolymer through atom transfer radical polymerization of acrylamide initiated from bio-based lignin macroinitiator. Wood Sci. Technol., 54, 1569-1585. https://doi.org/10.1007/s00226-020-01231-z
[17] Messmer, N. R., Guerrini, L. M., & Oliveira, M. P. (2018). Effect of unmodified kraft lignin concentration on the emulsion and miniemulsion copolymerization of styrene with n-butyl acrylate and methacrylic acid to produce polymer hybrid latex. Polym. Adv. Technol., 29(3), 1094-1106. https://doi.org/10.1002/pat.4221
[18] Ganewatta, M. S., Lokupitiya, H. N., & Tang, C. (2019). Lignin biopolymers in the age of controlled polymerization. Polymers, 11(7), 1176. https://doi.org/10.3390/polym11071176