Neural Network Technology for Image Downscaling

Roman Tytyk
Roman Tkachenko
Ivan Izonin ivanizonin [at] gmail.com
Kateryna Hrytsyk
  1. Publishing Information Technology Department, Lviv Polytechnic National University, UKRAINE, Lviv, S. Bandery street 12
Abstract 

In this paper described for the first time neural network technology developed to zoom out images scale. The developed method uses a neural structure model geometric transformations to establish the connections between frames pairs of images of high and low resolution. Adjusted so in the learning process synaptic scales allow to change the scale of images of one class without substantial loss of quality

References 

[1] Izonin I. Learning-based image super-resolution using weight coefficients of synaptic connections / Ivan Izonin, Roman Tkachenko, Dmytro Peleshko, Taras Rak, Danylo Batyuk // Computer science and information technologies: proc. of X intern. scien. and techn. conf., Lviv, Ukraine, 14-17 Sep. 2015. – Lviv: Lviv Polytechnic Publishing House, 2015. – P. 25-29.
[2] Tkachenko R. Accelerated learning of multilayered neural networks on tha base of the new paradigma / R Tkachenko // Neural networks and their applications: proc. of intern. conf., Kule, Poland, 21-23 April 1997. – Kule, 1997. – P. 129-130.
[3] Peleshko D. Analysis of invariant moments in tasks image processing / D.Peleshko, M. Peleshko, N. Kustra, I. Izonin // The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM): proc. of intern. conf., Polyana-Svalyava, (Zakarpattya), Ukraine, 23-25 Feb. 2011. – Lviv: Publishing House Vezha&Co, 2011. – P. 263-264.
[4] Andriyetskyy B. Geometrical transformation machine in unsupervised learning mode. / Bohdan Andriyetskyy, Uliana Polishchuk, Oleh Kulynsky // Perspective technologies and methods in MEMS design: proc. of intern. sciet. and techn. conf., », Polyana, 16 – 20 April 2013. – Publishing house LPNU, 2006. – P. 87-88.