Effect of the surface modification of HAp nanoparticles by oleic acid on the properties of HDPE nanocomposites containing thereof
I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license
This research is devoted to obtaining of HAp-filled nanocomposites with enhanced performans. The goal has been achieved by using HAp nanoparticles modified by oleic acid. This results in an essential increase in the mechanical properties of the obtained nanocomposites as compared to HDPE nanocomposites containing unmodified HAp.
[1] Jaggi, H. S., Kumar, S., Das, D., Satapathy, B. K., & Ray, A. R. (2014). Morphological correlations to mechanical performance of hydroxyapatite-filled HDPE/Uhmwpe Composites. Journal of Applied Polymer Science, 132(1), 1-10. https://doi.org/10.1002/app.41251
[2] Sloten, J. V., Labey, L., Audekercke, R. V., & Perre, G. V. (1998). Materials selection and design for orthopaedic implants with improved long-term performance. Biomaterials, 19(16), 1455–1459. https://doi.org/10.1016/s0142-9612(98)00058-1
[3] Shi, C., Yuan, Z., Han, F., Zhu, C., & Li, B. (2016). Polymeric biomaterials for bone regeneration. Annals of Joint, 1, 27. https://doi.org/10.21037/aoj.2016.11.02
[4] Oladele, I. O., Agbabiaka, O. G., Adediran, A. A., Akinwekomi, A. D., & Balogun, A. O. (2019). Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites. Heliyon, 5(10), 1-7. https://doi.org/10.1016/j.heliyon.2019.e02552
[5] Šupová, M. (2009). Problem of hydroxyapatite dispersion in polymer matrices: A Review. Journal of Materials Science: Materials in Medicine, 20(6), 1201–1213. https://doi.org/10.1007/s10856-009-3696-2
[6] Albano, C., Cataño, L., Figuera, L., Perera, R., Karam, A., González, G., & Noris, K. (2008). Evaluation of a composite based on high-density polyethylene filled with surface-treated hydroxyapatite. Polymer Bulletin, 62(1), 45–55. https://doi.org/10.1007/s00289-008-1011- x
[7] Aiza Jaafar, C. N., Zainol, I., Izyan Khairani, M. I., & Dele-Afolabi, T. T. (2022). Physical and mechanical properties of tilapia scale hydroxyapatite-filled high-density polyethylene composites. Polymers, 14(2), 251. https://doi.org/10.3390/polym14020251
[8] Zuo, Y., Li, Y., Li, J., Zhang, X., Liao, H., Wang, Y., & Yang, W. (2007). Novel biocomposite of hydroxyapatite reinforced Polyamide and polyethylene: Composition and properties. Materials Science and Engineering: A, 452(3), 512–517. https://doi.org/10.1016/j.msea.2006.11.138
[9] Wang, Z.-P., Huang, Y.-F., Xu, J.-Z., Niu, B., Zhang, X.-L., Zhong, G.-J., Xu, L., & Li, Z.- M. (2015). Injection-molded hydroxyapatite/polyethylene bone-analogue biocomposites via structure manipulation. Journal of Materials Chemistry B, 3(38), 1-9, 7585–7593. https://doi.org/10.1039/c5tb00643k
[10] Wilson, O. C. (2009). Surface modification of hydroxyapatite: A Review. Ceramic Transactions Series, 171–181. https://doi.org/10.1002/9780470538357.ch17
[11] Nabipour, H., Batool, S., & Hu, Y. (2021). Chemical surface modification of hydroxyapatite for biomedical application: A Review. Emergent Materials, 6(1), 31–44. https://doi.org/10.1007/s42247-021-00322-2
[12] Zhang, J., Feng, Y., Zhou, X., Shi, Y., & Wang, L. (2019). Research status of artificial bone materials. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(1), 37–53. https://doi.org/10.1080/00914037.2019.1685518
[13] Mohd Pu’ad, N. A. S., Abdul Haq, R. H., Mohd Noh, H., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2020). Synthesis method of hydroxyapatite: A Review. Materials Today: Proceedings, 29, 233–239. https://doi.org/10.1016/j.matpr.2020.05.536
[14] Wang, M., & Bonfield, W (2001). Chemically coupled hydroxyapatite–polyethylene composites: Structure and properties. Biomaterials, 22(11), 1311–1320. https://doi.org/10.1016/s0142-9612(00)00283-0
[15] Langmuir, I. (1917). The shapes of group molecules forming the surfaces of liquids. Proceedings of the National Academy of Sciences of the United States of America, 3(4), 251- 257. https://www.jstor.org/stable/83667.
[16] Rafique, M. M. (2018). Hydrothermal processing of phase pure and doped hydroxyapatite and its characterization. Journal of Encapsulation and Adsorption Sciences, 8(1), 18–37. https://doi.org/10.4236/jeas.2018.81002
[17] Ingham, B. (2015). X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 21(4), 229–303. https://doi.org/10.1080/0889311x.2015.1024114
[18] Winterer, M. (2002). Nanocrystalline Ceramics: Synthesis and Structure, Publisher. Springer-Verlag, Berlin. ISBN 3-540-43433-X.
[19] HYDROXYLAPATITE ''HIGH RESOLUTION'' - Optional[ATR-IR] - Spectrum SpectraBase. https://spectrabase.com/spectrum/G6i44b42hBS.
[20] Khan, H. M., Iqbal, T., Ali, C. H., Yasin, S., & Jamil, F. (2020). Waste quail beaks as renewable source for synthesizing novel catalysts for biodiesel production. Renewable Energy, 154, 1035–1043. https://doi.org/10.1016/j.renene.2020.03.079
[21] Liu, T., Huang, K., Li, L., Gu, Z., Liu, X., Peng, X., & Kuang, T. (2019). High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Composites Science and Technology, 175, 100–110. https://doi.org/10.1016/j.compscitech.2019.03.012
Comments
Abstract
This research is devoted to obtaining of HAp-filled nanocomposites with enhanced performance. The goal has been achieved by using HAp nanoparticles modified by oleic acid. This results in an essential increase in the mechanical properties of the obtained nanocomposites as compared to HDPE nanocomposites containing unmodified HAp.