Application of the method of discrete input pulse energy for energy-efficient production of chelidonium majus extract

The innovative and nanotechnologies in the chemical and food industries
3rd International Scientific Conference «Chemical Technology and Engineering»: Proceedings – June 21–24th, 2021, Lviv, Ukraine – Lviv: Lviv Polytechnic National University, 2021, pp. 136–138

Authors

First and Last Name Academic degree E-mail Affiliation
Liubov Gozhenko Ph.D. ittf_tds [at] ukr.net Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Kyiv, Ukraine
Georgii Ivanitskyi Ph.D. gergey4 [at] gmail.com National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Kyiv, Ukraine
Bogdan Tselen Ph.D. ittf_tds [at] ukr.net Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Kyiv, Ukraine
Natalia Radchenko Ph.D. ittf_tds [at] ukr.net Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Kyiv, Ukraine
Anna Nedbailo No ittf_tds [at] ukr.net Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
Kyiv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 12.04.2021 - 13:14
Abstract

The paper is devoted to the application of the method of discrete input pulse energy (DIPE), which today is one of the most effective ways to achieve high energy performance in food and chemical technologies. The results of experimental studies of aqueous extraction of chelidonium majus using the method of DIPE are presented. Physico-chemical parameters of the aqueous extract of chelidonium majus depending on the temperature of treatment are given.

References
  1. Dolinskyi, A. A., Ivanitskyi, G. K. (2008). Teplomassoobmen i hidrodinamika v parozhidkostnykh dispersnykh sistemakh. Teplofizicheskie osnovy diskretno-impulsnoho vvoda enerhii [Heat and mass transfer and hydrodynamics in vapour-liquid disperse systems], Naukova dumka, Kyiv, Ukraine, 381 .
  2. Ivanitskyi, G. K., Gozhenko, L. P. (2014). Analiticheskoe issledovanie usloviy vozniknovenia kavitatsii v trube pulsatsionnoho disperhatora udarnoho tipa [The analytical study of the conditions for cavitation in the tube of a pulsating dispersant of impact type]. Prom. teplotekhnika [Industrial heat engineering]. Kyiv: 36 (6), 5 - 12.
  3. Ivanitskyi, G. K., Chayka, O. I., Gozhenko, L. P. (2015). Zastosuvannia kavitatsiynoho reaktora pulsatsionnoho typu dlia ekstrahuvannia z roslynnoi syrovyny [The use of pulsating cavitation reactor type for extraction of plant raw material]. Naukovi pratsi ONAKHT [Scientific Works]. Odesa: 2 (47), 138 – 142.
  4. Vitenko, T. M. (2009). Hidrodynamichna kavitatsia u masoobminnykh, chimichnykh i biolohichnykh protsessakh [The hydrodynamic cavitation in mass transfer, chemical and biological processes]. Ternopil Ivan Puliuy National Technical University, Ternopil, Ukraine, 220.
  5. Basok, B. I., Novitskaia, M. P., Chayka, O. I. (2014). Hidrodynamika i teploobmen pri  pnevmopulsatsionnom vozdeystvii na zhydkie sistemy [Hydrodynamics and heat transfer in case of pneumatic pulsation action on liquid systems], Kalyta, Kyiv, 140 .
Official paper