Improvements That are Applicable in the Automation System to Increase CH4 Ratio in Co-Fermentation Plants

Alternative and non-conventional energy sources
Proceedings of the 2nd International Scientific Conference «Chemical Technology and Engineering»: June 24–28, 2019, Lviv: Lviv Polytechnic National University, 2018, pp. 306–310

Authors

First and Last Name Academic degree E-mail Affiliation
Mustafa Karagöz Ph.D. mustafakaragoz [at] karabuk.edu.tr TOBB Tech. Sciences Vocational School, Karabuk University
Karabuk, Turkey
Burak Çiftçi Ph.D. burakciftci [at] karabuk.edu.tr TOBB Tech. Sciences Vocational School, Karabuk University
Karabuk, Turkey
Nuri Tunç No tunckar.nt [at] gmail.com Karabuk University
Karabuk, Turkey
Emrah Deniz Ph.D. edeniz [at] karabuk.edu.tr Karabuk University
Karabuk, Turkey

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 03.05.2019 - 20:13
Abstract

Increasing the rate of CH4 in thebiogas is very important in terms of the efficient evaluation of the resources as well as the efficient fulfillment of energy demand. One of the methods that can be used for this purpose, also known as co-fermentation, is to process different organic wastes, at a certain rate. Although the fermentation of organic waste mixtures in the specified amounts contributes to the increase of the CH4 ratio in the biogas content, it may cause the halt of biogas production in excess of the amounts determined in the organic waste mixture ratios. In this study, improvements in biogas plant automation are presented and proposed to prevent digester failure in plants producing biogas with co-fermentation.

References

[1] J. Xuan, M. Leung, D. Leung, and M. Ni., «A review of biomass-derived fuel processors for fuel cell systems» Renew. Sustain. Energy Rev., 13, pp. 1301–1313, 2009.

[2] M. Karagöz, N. Tunç, B. Çiftçi, İ. Ekmekçi and E. Deniz, «Experimental Investigation on The Usability of Granulated Furnace Slag in Biogas Purification Processes», in Third International Iron and Steel Symposium, 2017, pp. 332-335.

[3] Gomez Montoya J.P.G., et al., «Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence», Thermal Science, vol. 19, pp. 1919–30, 2015.

[4] M. Karagöz, N. Tunç, B. Çiftçi, and E. Deniz, «Experimental Investıgation of the Usability of Ponza Stone and Blast Furnace Slag Mixture in Biogas Purification Processes» II. International Symposium on Multidisciplinary Studies, Rome, 2017,pp. 109-121.

[5] J.L. Chen, R. Ortiz, T.W.J. Steele, D.C. Stuckey, «Toxicants inhibiting anaerobic digestion: a review», Biotechnol Adv., 32, pp. 1523-34, 2014.

[6] E. Abdelsalam, M. Samer, M.A. Abdel-Hadi, H.E. Hassan, Y. Badr, «Influence of laser irradiation on rumen fluid for biogas production from dairy manure», Energy, vol. 163 pp. 404- 415, 2018.

[7] M. Demuynck, J. Nyns, W. Palz, «Biogas Plants in Europe, Energy from Biomass Series», 6. D. Reidel Publishing Company, Boston, USA,1984.

[8] S. Mehariya, A. Patel, P. Obulisamy, E. Punniyakotti and J. Wong, «Co-digestion of food waste and sewage sludge for methane production: Current status and perspective», Bioresource Technology, vol. 265, pp. 519-531, 2018. Available: 10.1016/j.biortech.2018.04.030 [Accessed 22 May 2019].

[9] J. Kim, G. Baek, J. Kim, C. Lee, «Energy production from different organic wastes by anaerobic codigestion: Maximizing methane yield versus maximizing synergistic effect», Renewable Energy, vol. 136, pp. 683-690, 2019.

[10] H. El-Mashad, R, Zhang, «Biogas production from co-digestion of dairy manure and food waste», Bioresour. Technol., vol. 101 (11), pp. 4021-4028, 2010.

[11] C. Zhang, G. Xiao, L. Peng, H. Su. T., «TanThe anaerobic co-digestion of food waste and cattle manure», Bioresour. Technol., vol. 129, pp. 170-176, 2013.

[12] E. Maranon, L. Castrillon, G. Quiroga, Y. Fernandez-Nava, L. Gomez, M.M. Garcia, «Codigestion of cattle manure with food waste and sludge to increase biogas production», Waste Manage., vol. 32 pp. 1821-1825, 2012.

[13] F.J. Callaghan, D.A.J. Wase, K. Thayanity, C.F. Forster, «Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure», Biomass Bioenerg., vol. 22, pp. 71-77, 2002.

[14] J. De Vrieze, L. De Lathouwer, W, Verstraete, N. Boon, «High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste» Water Res., vol. 47 (11), pp. 3732-3741, 2013.

[15] I.S. Kim, M.H. Hwang, N.J. Jang, S.H. Hyun, S.T. Lee,"Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process" Int. J. Hydrogen Energ., vol. 29 (11), pp. 1133-1140, 2004.

[16] J.H. El Achkar, T. Lendormi, Z. Hobaika, D. Salameh, N. Louka, R. G.Maroun, J.-L. Lanoisellé, «Anaerobic digestion of grape pomace: biochemical characterization of the fractions and methane production in batch and continuous digesters», Sustain. Energy Technol. Assess., vol. 29, pp. 44-4, 2018.

[17] M. Guerini-Filho, M. Lumi, C. Hasan, M. Marder, L.C.S. Leite, O. Konrad «Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil», Sustain. Energy Technol. Assess., vol. 29, pp. 44-49, 2018.

[18] D. Patowary, D.C. Baruah, «Effect of combined chemical and thermal pretreatments on biogas production from lignocellulosic biomasses», Ind. Crops Prod., vol. 124, pp. 735-746, 2018.

[19] D.R. Sousa Lima, O.F. Herrera Adarme, B.E. Lobo Baêta, L.V.Alves Gurgel, S.F. de Aquino «Influence of diff ;erent thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: a kinetic analysis» Ind. Crops Prod., vol. 111, pp. 684-693, 2018.

[20] V. Riggio, E. Comino, M. Rosso, «Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp», Renew. Energy, vol. 83, pp. 1043-1049, 2015.

[21] B.A. Aylin-Alagöz, O. Yenigün, A. Erdinçler, «Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment», Waste Manag., vol. 46, pp. 182-188, 2015.

[22] A. I. Parralejo, L. Royano J. González, J. F.González, «Small scale biogas production with animal excrement and agricultural residues», Industrial Crops and Products, vol. 131, pp. 307-314, 2019.

[23] J. Kim, H. Kim, G. Baek, C. Lee, «Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production», Waste Manag., vol. 60, pp. 322-328, 2017.

[24] D. Kaya, ve H. Öztürk, Biogas technology, Umuttepe Publications, İzmit, 2012.

 

Official paper