Using artificial intelligence in GIS for the needs of land management

Remote Sensing & GIS for Environmental Monitoring

Authors

First and Last Name Academic degree E-mail Affiliation
Ivan Sadovyy Ph.D. sadddd007 [at] gmail.com State Biotechnological University
Kharkiv, Ukraine
Nataliia Stoiko Ph.D. n_stoiko [at] ukr.net Lviv National Environmental University
Lviv, Ukraine
Liudmyla Makieieva Ph.D. makeevafiz2017 [at] gmail.com State Biotechnological University
Kharkiv, Ukraine
Alona Riasnianska Ph.D. alona.ryasnyanska [at] gmail.com State Biotechnological University
Kharkiv, Ukraine
Denys Makieiev No denismakeev09 [at] gmail.com State Biotechnological University
Kharkiv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 11.08.2022 - 17:15
Abstract 

More active and purposeful use of artificial intelligence for management, manipulation, analysis, modeling, presentation and display of geoinformation data will allow solving complex issues of land resource planning and management effectively. The research presents and analyzes the results of using machine learning methods to classify satellite images of the southern part of the Kharkiv region during the period of increased fire danger, which in turn will contribute to a more rational implementation of land management works. Geographic information systems are in constant development and are integrated with scientific achievements from other fields. Artificial intelligence, namely machine learning, in geoinformation systems allows for faster and better environmental research.

References 

Bishop, C. M. [2006]. Pattern Recognition and Machine Learning. Springer.

Filipponi,  F. [2018]. BAIS2:  Burned  Area  Index  for  Sentinel-2. Proceedings  of the  2nd  International Electronic  Conference on Remote Sensing. Vol.2,P.364. https://doi.org/10.3390/ecrs-2-05177

Quintano,  C.;  Fernandez-Manso,  A.; Fernandez-Manso, O. [2018]. Combination of Landsat and Sentinel-2 MSI  data  for  initial  assessing  of  burn  severity. International  Journal  of  Applied  Earth  Observation  and Geoinformation.No.64, P.221–225.

Tytarenko O. V., Lubskyy M. C., Rybak O. A. [2014] Vyznachennya yakisnykh zvyazkiv mizh nayavnistyu pokladiv vuhlevodniv ta teplovymy kharakterystykamy po danym DZZ (Determination of qualitative relationships between the presence of hydrocarbon deposits and thermal characteristics according to the data of DZZ). “Aerokosmichni sposterezhennya v interesakh stiykoho rozvytku ta bezpeky” (GEO-UA 2014): Kyiv: Naukova dumka, 2014. P.185-187