Land Quality Assessment with Feature Ranking of a Geospatial Datacube in Google Earth Engine: Case Study of Kryvyi Rih Region

Remote Sensing for Environmental Monitoring

Authors

First and Last Name Academic degree E-mail Affiliation
Artem Andreiev Ph.D. artem.a.andreev [at] gmail.com Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine
Kyiv, Ukraine
Achraf Chakri No a.chakri.ced [at] uca.ac.ma Cadi Ayyad University
Marrakesh, Morocco
João C. Antunes Rodrigues Ph.D. p5942 [at] ulusofona.pt RCM2+, FE, Lusófona University
Lisbon, Portugal
Anna Kozlova Ph.D. ak.koann [at] gmail.com Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine
Kyiv, Ukraine
Svitlana Lyubchyk Ph.D. p5322 [at] ulusofona.pt RCM2+, FE, Lusófona University
Lisbon, Portugal

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 22.08.2025 - 14:40
Abstract 

Assessment of land quality is important for sustainable land management, particularly for the industrial regions, recognizing the most deteriorated areas and enabling the implementation of good practices in soil use and recovery. The most suitable platform for this task is Google Earth Engine (GEE), offering scalable cloud processing of multi-temporal data with high efficiency and reproducibility. The aim of this study is to develop an approach for land quality assessment using a geospatial datacube built entirely GEE data catalogs. For this, the Random Forest model is used for classification and feature importance ranking of the input geospatial datacube. Also, the applied classification method is Random Forest, since it is available in GEE. In order to test an effectiveness of the developed approach, the experiment was conducted for the Kryvyi Rih region, using twelve geospatial layers representing topographic parameters, climate data, vegetation indices, and land cover classification. The model achieved the OA of 93.1%, confirming its reliability for land quality assessment. Also, the feature importance analysis identified the slope layer as the most influential, while land cover classification was found to be the least influential.

References 

Andreiev, A., & Artiushyn, L. (2024). Improvement of land cover classification accuracy by training sample clustering. Radioelectronic and Computer Systems, 2024(2), 66–72. https://doi.org/10.32620/reks.2024.2.06

 

Chakri, A., Laftouhi, N., Zouhri, L., Ibouh, H., & Ibnoussina, M. (2025). Assessment of satellite and reanalysis precipitation data using statistical and Wavelet analysis in Semi-Arid, Morocco. Water, 17(11), 1714. https://doi.org/10.3390/w17111714

 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005rg000183

 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

 

Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., & Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551–552, 357–366. https://doi.org/10.1016/j.scitotenv.2016.01.182

 

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012

 

Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411

 

Popov, M.O., (2007). Methodology of accuracy assessment of classification of objects on space images. Journal of Automation and Information Sciences, 39, 48-55. https://doi.org/10.1615/J Automat Inf Scien.v39.i1.50

 

Rodrigues, J. A., Farinha, J. T., Cardoso, A. M., Mendes, M., & Mateus, R. (2022). Prediction of sensor values in paper pulp industry using neural networks. In Mechanisms and machine science (pp. 281–291). https://doi.org/10.1007/978-3-030-99075-6_24

 

Sulla-Menashe, D., & Friedl, M. A. (2018). User guide to collection 6 MODIS land cover (MCD12Q1) and dynamics (MCD12Q2) products. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf

 

Wan, Z., Hook, S., & Hulley, G. (2015). MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD11A1.006