This article describes the development and field implementation of an advanced geodetic station designed to support multi-component geodetic monitoring. The station establishes a unified geodetic framework that seamlessly integrates GNSS, InSAR, geometric levelling, gravimetry, and high-precision linear-angular surveying, enabling comprehensive and cross-validated ground motion analysis. The design was implemented as part of research programs focused on deformation monitoring of the Dnister Hydroelectric Complex and the Rivne Nuclear Power Plant. Installation was carried out in multiple stages, allowing for field testing and optimization of the deployment methodology. GNSS measurements demonstrated the structural reliability of the station and confirmed its suitability for high-precision geodetic applications. The proposed engineering solution offers broad applicability in projects addressing geodynamic process monitoring, assessment of anthropogenic impacts, and the expansion of the national geodetic framework.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011
Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., & Casagli, N. (2021). Review of works combining GNSS and InSAR in Europe. Remote Sensing, 13(9), 1684. https://doi.org/10.3390/rs13091684
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661
GUHKiK. (1994). Instruktsiia pro typy tsentriv heodezychnykh punktiv (HONTA – 2.01, 02–01–93) [Instruction on types of centers of geodetic points]. Kyiv: Hlavne upravlinnia heodezii, kartohrafii ta kadastru (GUHKiK).
Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005
Periy, S. S., Pokotylo, I. Ya., & Korlyatovych, T. Yu. (2020). Stanovyi hvynt dlia skriplennia heodezychnykh pryladiv z tsentruvalnymy plytamy trubnykh znakiv (Patent application No. u202003468). Lviv Polytechnic National University.
Savchyn, І., Otruba, Y., & Tretyak, K. (2021). The first Ukrainian permanent GNSS station in Antarctica: processing and analysis of observation data. Ukrainian Antarctic journal, (2), 3-11. https://doi.org/10.33275/1727-7485.2.2021.674
Sidorov, I., Perij, S., & Sarnavskyj, V. (2015). Determination of the earth surface movements in areas of Dnister PSPP using satellite and ground geodetic methods. Geodynamics, 19(2), 15–25. https://doi.org/10.23939/jgd2015.02.015
Tretyak, K., & Kukhtar, D. (2023). Application of Sentinel-1 radar interferometric images for the monitoring of vertical displacements of the earth’s surface affected by non-tidal atmospheric loading. Geofizicheskiy Zhurnal, 45(1). https://doi.org/10.24028/gj.v45i1.275180
Tretyak, K., Kukhtar, D., Prykhodko, M., Yatsyk, V. (2023). Deployment Technique of Radar Corner Reflector for SAR Observations. International Conference of Young Professionals «GeoTerrace-2023», 2-4 October 2023, Lviv, Ukraine. DOI: 10.3997/2214-4609.2023510038
Tretyak, K., Periy, S., Sidorov, I., & Babiy, L. (2015). Complex high accuracy satellite and field measurements of horizontal and vertical displacements of control geodetic network on Dnister hydroelectric pumped power station (HPPs). Geomatics and environmental engineering, 9(1). dx.doi.org/10.7494/geom.2015.9.1.83
Trevoho, I., Denysov, O., Tsyupak, I., Heger, V., & Tymchuk, V. (2010). Etalonnyi heodezychnyi bazys oryhinalnoi konstruktsii [Reference geodetic baseline of original design]. Suchasni dosiahnennia heodezychnoi nauky i vyrobnytstva, 1(19), 43–49. Lviv: Liha-Press.