After the end of the war in Ukraine, a large part of the territory will remain mined. Most of them are apartment buildings and the areas around them, hard-to-reach places such as tunnels, ventilation shafts, and apartments, etc.
Existing tools are specialized machines designed for demining in open areas or small wheeled/tracked robots that cannot climb stairs, up mines and vents, or overcome rubble or contaminated areas. Therefore, this paper proposes to use small-sized walking hexapod robots for demining operations in inaccessible places, as they have better cross-country ability and maneuverability and are able to overcome rubble and contaminated areas, as well as climb upward due to the friction forces of the limbs and the surface. This will enable the robot to monitor the condition of ventilation systems and tunnels, i.e. where humans cannot get in, which will additionally save their lives in the event of an explosion of dangerous objects. The construction of such robots requires an integrated approach, so this paper provides a list of recommendations that can be used to build a reliable and effective tool that can be used after the war to demine territories.
Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals. Nature, 521(7553), 503–507. https://doi.org/10.1038/nature14422
Ekonomichna pravda. (2023, August 21). Desiatky rokiv ta miliardy dolariv. Koly rozminuiut ukrainski polia ta mista? https://www.epravda.com.ua/publications/2023/03/7/697737/
Krenich, S., & Urbanczyk, M. (2011). Six-Legged Walking Robot for Inspection Tasks. Solid State Phenomena, 180, 137–144. https://doi.org/10.4028/www.scientific.net/ssp.180.137
Lee, K.-H., & Ehsani, R. (2008). Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns. Computers and Electronics in Agriculture, 60(2), 250–262. https://doi.org/10.1016/j.compag.2007.08.007
Meleshko, V. V., & Nesterenko, O. I. (2011). Besplatformennye inercialnye navigacionnye sistemy. In ela.kpi.ua. POLIMED-Servis. https://ela.kpi.ua/handle/123456789/39032
Persikov, V. K. (2014). Analiz problem stvorennia tekhnolohichnykh robotiv vertykalnoho peremishchennia. Adaptyvni systemy avtomatychnoho upravlinnia, 1(24), 87–95. https://doi.org/10.20535/1560-8956.24.2014.38195
Polishchuk, M. M. (2018). PIDVYSHCHENNIA ENERHOEFEKTYVNOSTI ROBOTIV VERTYKALNOHO PEREMISHCHENNIA. Adaptyvni systemy avtomatychnoho upravlinnia, 2(33), 97–105. https://doi.org/10.20535/1560-8956.33.2018.164679
Platov, I. M., & Pavlovskyi, O. M. (2020). Heksapod dlia diahnostyky skladnykh sporud ta inzhenernykh obiektiv. Cystema zhyvlennia. XVI Vseukrainska naukovo-praktychna konferentsiia studentiv, aspirantiv ta molodykh vchenykh “Efektyvnist ta avtomatyzatsiia inzhenernykh rishen u pryladobuduvanni”, 8-9 hrudnia 2020 roku, m. Kyiv, Ukraina : zbirnyk prats konferentsii. https://ela.kpi.ua/handle/123456789/39838
Platov I.M., Pavlovskyi O.M. (2023). ZMENSHENNIA POKHYBKY SYSTEMY ZORU MOBILNOHO ROBOTA NA OSNOVI LAZERNOHO DALEKOMIRA VL53L0X. Integrated Intellectual Robotechnical Complexes (ІІRTC-2023). 16th International Science and Technical Conference, May 23-24th, 2023, Kyiv, Ukraine – К.: NAU, 2023. – 402 p. (collected articles)
Ramdya, P., Thandiackal, R., Cherney, R., Asselborn, T., Benton, R., Ijspeert, A. J., & Floreano, D. (2017). Climbing favours the tripod gait over alternative faster insect gaits. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14494