Differentiation of recent geodynamic processes within the Carpathian Mountains based on GNSS data

Earth Surface Processes & Geodynamics

Authors

First and Last Name Academic degree E-mail Affiliation
Ihor Savchyn Ph.D. savchyn.ih [at] gmail.com Lviv Polytechnic National University
Львів, Ukraine
Artem Bilashuk No savchyn.ih [at] gmail.com Lviv Polytechnic National University
Львів, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 27.08.2023 - 17:42
Abstract 

 

This work presents the results of the analysis of data from 50 continuous GNSS stations located in the Carpathian Mountains to study recent geodynamic processes of this region. Determine the value of the linear velocity of horizontal movements of selected continuous GNSS stations and perform their analysis. An analysis of recent geodynamic processes was performed and the main extreme zones of geodynamic processes have been identified.

References 

Blewitt, G., W. C. Hammond, & C. Kreemer (2018), Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.

 

Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology210(1), 1-56.

 

Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S., & Panza, G. (2012). Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics530, 50-79.

 

Kondracki, J. A. (2023). Carpathian Mountains. Encyclopedia Britannica. https://www.britannica.com/place/Carpathian-Mountains

 

Márton, E., Rauch-Włodarska, M., Krejčí, O., Tokarski, A. K., & Bubík, M. (2009). An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophysical Journal International177(3), 925-940.

 

Sagiya, T., Miyazaki, S., & Tada, T. (2000). Continuous GPS Array and Present-day Crustal Deformation of Japan. Microscopic and Macroscopic Simulation: Towards Predictive Modelling of the Earthquake Process, 2303–2322. https://doi.org/10.1007/978-3-0348-7695-7_26

 

Sandulescu, M. (1988). Cenozoic Tectonic History of the Carpathians: Chapter 2.

 

Savchyn, I., & Vaskovets, S. (2018). Local geodynamics of the territory of Dniester pumped storage power plant. Acta Geodyn. Geomater15(1), 189. https://doi.org/10.13168/AGG.2018.0002

 

Savchyn, I., Lozynskyi, V., Petryk, Y., & Marusazh, K. (2020, May). Geodetic monitoring of the protective dam of the Lviv MSW landfill after reconstruction. In Geoinformatics: Theoretical and Applied Aspects 2020 (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2020geo130

 

Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola strait-Lemaire channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia18(2). https://doi.org/10.13168/AGG.2021.0018

 

Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., ... & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences101, 139-183.

 

Shen, Z.-K., Jackson, D. D., & Ge, B. X. (1996). Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research: Solid Earth, 101(B12), 27957–27980. https://doi.org/10.1029/96jb02544