TGA and DTA of composite fuel and its components

Alternative and non-conventional energy sources
4th International Scientific Conference «Chemical Technology and Engineering»: Proceedings – June 26–29th, 2023, Lviv, Ukraine – Lviv: Lviv Polytechnic National University, 2023, pp. 204–208

Authors

First and Last Name Academic degree E-mail Affiliation
Tetiana Korinchevska Ph.D. tvkorin [at] gmail.com Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine
Kyiv, Ukraine
Viacheslav Mykhailyk Ph.D. mhlk45 [at] gmail.com Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine
Kyiv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 31.03.2023 - 14:30
Abstract

The composite fuel and its components are studied by TGA and DTA methods: the milled peat residue after extraction of humus substances in an alkaline medium and the corn harvest residues. The temperature range and the rate of dehydration, thermal decomposition of organic and mineral substances, moisture and ash content are determined. Thermal effects of thermal decomposition of organic substances in fuel and components are estimated.

References

[1]     Kudria S. O. (Ed.). (2020). Atlas enerhetychnoho potentsialu vidnovliuvanykh dzherel enerhii Ukrainy. Kyiv: Instytut vidnovliuvanoi enerhetyky NAN Ukrainy. Retrieved from https://www.ive.org.ua/wp-content/uploads/atlas.pdf.

[2]     Gorovaya, A. I., Orlov, D. S., & Scherbenko, O. V. (1995) Guminovyie veschestva. Kiev: Naukova dumka.

[3]     Popov, V. P. (Ed.). (1962). Guminovyie udobreniya. Teoriya i praktika ih primeneniya. Kiev: Gosudarstvennoe izdatelstvo selskohozyaystvennoy literaturyi.

[4]     Mykhailyk, V., Snezhkin, Y., Oranska, O., Korinchevska, T., & Korinchuk, D. (2015). Study of the thermal properties of solid residues of milled peat after the humus substances extraction. Thermophysics and Thermal Power Engineering, 37(3), 54–64. https://doi.org/https://doi.org/10.31472/ihe.3.2015.07.

[5]     Korinchevska, T., & Mykhailyk, V. (2020). Thermal decomposition of granulated fuel from miscantus. Scientific Works, 84(1), 10–15. https://doi.org/10.15673/swonaft.v84i1.1862.

[6]     Mykhailyk, V., Snezhkin, Yu., & Korinchuk, D., (2014). Termichne rozkladannia hranul palyva na osnovi torfu ta derevyny. Promyslova teplotekhnika, 36(2), 11–19.

Official paper

Comments

oleksandr.ivashchuk
oleksandr.ivashchuk's picture
administrator, reviewer, secretary

Dear authors, please edit your submission - change the literature references No. 2 and 3.

Please add a new version after edition in the comments.

Fri, 03/31/2023 - 15:09
Татьяна Коринчевская
Татьяна Коринчевская's picture
researcher, reviewer

References

[1]     Kudria S. O. (Ed.). (2020). Atlas enerhetychnoho potentsialu vidnovliuvanykh dzherel enerhii Ukrainy. Kyiv: Instytut vidnovliuvanoi enerhetyky NAN Ukrainy. Retrieved from https://www.ive.org.ua/wp-content/uploads/atlas.pdf.

[2]     Makan, A. (Ed.). (2022). Humus and Humic Substances - Recent Advances. IntechOpen. doi: 10.5772/intechopen.100876.

[3]     Pettit, R.E. (2020). Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. URL: https://humates.com/wp-content/uploads/2020/04/ORGANICMATTERPettit.pdf.

[4]     Mykhailyk, V., Snezhkin, Y., Oranska, O., Korinchevska, T., & Korinchuk, D. (2015). Study of the thermal properties of solid residues of milled peat after the humus substances extraction. Thermophysics and Thermal Power Engineering, 37(3), 54–64. https://doi.org/10.31472/ihe.3.2015.07.

[5]     Korinchevska, T., & Mykhailyk, V. (2020). Thermal decomposition of granulated fuel from miscantus. Scientific Works, 84(1), 10–15. https://doi.org/10.15673/swonaft.v84i1.1862.

[6]     Mykhailyk, V., Snezhkin, Yu., & Korinchuk, D., (2014). Termichne rozkladannia hranul palyva na osnovi torfu ta derevyny. Promyslova teplotekhnika, 36(2), 11–19.

Fri, 03/31/2023 - 16:10