Hydrodynamics of cotton filtration drying

The innovative and nanotechnologies in the chemical and food industries
3rd International Scientific Conference «Chemical Technology and Engineering»: Proceedings – June 21–24th, 2021, Lviv, Ukraine – Lviv: Lviv Polytechnic National University, 2021, pp. 109–111

Authors

First and Last Name Academic degree E-mail Affiliation
Volodymyr Atamanyuk Sc.D. atamanyuk [at] ukr.net Lviv Polytechnic National University
Lviv, Ukraine
Zoriana Gnativ Ph.D. atamanyuk [at] ukr.net Lviv Polytechnic National University
Lviv, Ukraine
Dauren Dzhanabaiev Ph.D. husanov_a [at] mail.ru Auezov South Kazakhstan State University
Shymkent, Kazakhstan
Alisher Khusanov Ph.D. husanov_a [at] mail.ru Auezov South Kazakhstan State University
Shymkent, Kazakhstan

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 04.06.2021 - 12:26
Abstract

The movement of the gas flow through the porous structure of the material is a problem of hydrodynamics. The intensity of heat and mass transfer during the drying process determines the rate of thermal agent movement relatively to the elements of the porous layer. In this paper, the experimental results regarding the pressure loss in a layer of cotton fiber during filtration drying are presented. Under the action of pressure difference the effect of the cotton fiber layer height on the porosity, equivalent diameter, through which the thermal agent is filtered, the specific surface area and the pressure loss was analytically determined.

References
  1. Kale, R., Bansal, P. and Gorade, V. (2017). Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose. Journal of Polymers and the Environment, 26(1), 355-364.
  2. Zeng, L., Zhao, S. and He, M. (2018). Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. Journal of Power Sources, 376, 33-40.
  3. Wedin, H., Niit, E., Mansoor, Z., Kristinsdottir, A., de la Motte, H., Jönsson, C., Östlund, Å. and Lindgren, C. (2018). Preparation of Viscose Fibres Stripped of Reactive Dyes and Wrinkle-Free Crosslinked Cotton Textile Finish. Journal of Polymers and the Environment, 26(9), 3603-3612.
  4. Cui, L., Shi, S., Hou, W., Yan, Z. and Dan, J. (2018). Hydrolysis and carbonization mechanism of cotton fibers in subcritical water. New Carbon Materials, 33(3), 245-251.
  5. L.H.C.D., S. (2000). Estudo da Secagem de Materiais Texteis. Ph.D. Maringaa.
  6. Azhimetova, G. (2011). Mirovoy opyt i obzor razvitiya khlopkovodstva v Kazakhstane. Sovremennyye problemy nauki i obrazovaniya, 1, 53-58.
  7. Shaykhov, E. and Normukhamedov, N. (1990). Pakhtachilik. Tashkent: Mekhnat, 284.
  8. Lv, N., Wang, X., Peng, S., Luo, L. and Zhou, R. (2018). Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation. RSC Advances, 8(53), 30257-30264.
  9. Ibrogimov, K., Alimardonov, K., Zul'fanov, S. and Badalov, A. (2007). Termodinamicheskiye kharakteristiki protsessa degidratatsii khlopka-syrtsa. Tekhnologiya tekstil'noy promyshlennosti, 4, 19-22.
  10. Boltaboyev, S. and Parpiyev, A. (1980). Sushka khlopka-syrtsa. Tashkent: Ukituvchi.
  11. Egamberdiyev, A., Ibragimov, S. and Amanturdiyev, A. (2009). Ġŭza selektsiyasi, uruġchiligi va biologiyasi. Tashkent: Nauka, 128.
  12. Azhimetova, G. (2011). Mirovoy opyt i obzor razvitiya khlopkovodstva v Kazakhstane. Sovremennyye problemy nauki i obrazovaniya, 1, 53-58.
Official paper