Analysis of the co-seismic displacement caused by the 2023 Mw 6.9 High Atlas Earthquake in the Ouarzazate Province, Morocco using DInSAR

Earth Surface Processes & Geodynamics

Authors

First and Last Name Academic degree E-mail Affiliation
Bouchra SADIQ No sadiqbouchra.sb [at] gmail.com Faculty of Sciences and Techniques Marrakech
Marrakech, Morocco
Cadi Ayyad University
Marrakech, Morocco
Anna KOZLOVA Ph.D. ak.koann [at] gmail.com Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences
Kyiv, Ukraine
The National Academy of Sciences of Ukraine
Kyiv, Ukraine
Artem ANDREIEV Ph.D. artem.a.andreev [at] gmail.com Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences
Kyiv, Ukraine
The National Academy of Sciences of Ukraine
Kyiv, Ukraine
Hassan IBOUH Ph.D. h.ibouh [at] uca.ac.ma Faculty of Sciences and Techniques Marrakech
Marrakech, Morocco
Cadi Ayyad University
Marrakech, Morocco
Daoud MEZZANE Ph.D. daoudmezzane [at] gmail.com Cadi Ayyad University
Marrakech, Morocco

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 25.08.2024 - 14:28
Abstract 

Our study quantifies co-seismic deformation in the Ouarzazate Province, Morocco, caused by the 2023 Mw 6.8 High Atlas earthquake using Interferometric Synthetic Aperture Radar (InSAR) technology. We identified significant ground displacement, with uplift reaching up to 5 cm in Northwest areas of the province and subsidence down to -3 cm in The Ouarzazate Basin. The displacement patterns correlate strongly with existing fault lines, particularly the South Atlas Fault (SAF) and its branches. These findings highlight the region's seismic vulnerability and emphasize the need for further research to mitigate potential seismic hazards.

References 
  1. Álvaro, J. J., Benziane, F., Thomas, R., Walsh, G. J., & Yazidi, A. (2014). Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. Journal of African Earth Sciences, 98, 19–33. https://doi.org/10.1016/j.jafrearsci.2014.04.026
  2. Boulton, S. J., VanDeVelde, J. H., & Grimes, S. T. (2019). Palaeoenvironmental and tectonic significance of Miocene lacustrine and palustrine carbonates (Aït Kandoula Formation) in the Ouarzazate Foreland Basin, Morocco. Sedimentary Geology, 383, 195–215. https://doi.org/10.1016/j.sedgeo.2019.01.009
  3. De Lamotte, D. F., Fourdan, B., Leleu, S., Leparmentier, F., & De Clarens, P. (2015). Style of rifting and the stages of Pangea breakup. Tectonics, 34(5), 1009–1029. https://doi.org/10.1002/2014tc003760
  4. Kril, T., & Orlenko, T. (2022). Surface Dynamics Assessment as a Landslide Hazard Factor by Remote Sensing Data. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. https://doi.org/10.3997/2214-4609.2022580246
  5. Onana, P. N. E., Toto, E. A., Zouhri, L., Chaabane, A., Mouraouah, A. E., & Brahim, A. I. (2011). Recent seismicity of Central High Atlas and Ouarzazate basin (Morocco). Bulletin of Engineering Geology and the Environment, 70(4), 633–641. https://doi.org/10.1007/s10064-011-0361-z
  6. Piestova, I., Dugin, S., Orlenko, T., & Svideniuk, M. (2020). Assessing and forecasting landslide hazards of The Right Bank of the Kanev reservoir based on radar remote sensing data with corner reflectors using. XIV International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment", 1, 1-5.
  7. Pilz, M., Cotton, F., Razafindrakoto, H. N. T., Weatherill, G., & Spies, T. (2020). Regional broad-band ground-shaking modelling over extended and thick sedimentary basins: an example from the Lower Rhine Embayment (Germany). Bulletin of Earthquake Engineering, 19(2), 581–603. https://doi.org/10.1007/s10518-020-01004-w
  8. Sébrier M, Siame L, Zouine EM, Winter T, Missenard Y, Leturmy P (2006) Active tectonics in the Moroccan High Atlas. Compt Rendus Geosci, 338(1–2), 65–79. https://doi.org/10.1016/j.crte. 2005.12.001
  9. Stankevich, S., Piestova, I., Kozlova, A., Titarenko, O., & Singh, S. K. (2020). Satellite Radar Interferometry Processing and Elevation Change Analysis for Geoenvironmental Hazard Assessment. In P. K. Srivastava, S. K. Singh, U. C. Mohanty, & T. Murty (Eds.), Techniques for Disaster Risk Management and Mitigation, 125–139. https://doi.org/10.1002/9781119359203.ch10
  10. Sun, X., Chen, X., Yang, L., Wang, W., Zhou, X., Wang, L., & Yao, Y. (2022). Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sensing, 14(13), 3009. https://doi.org/10.3390/rs14133009