This study investigates the consistency of regional and global geoid and quasi-geoid models in the cross-border area between Poland and Ukraine with respect to the Baltic height system. The research addresses the problem of systematic shifts between regional solutions, referenced to the EVRF2007 system, and global gravity field models that lack a fixed vertical reference. The methodology included a comparative analysis of height differences derived from GNSS/leveling and from model-based interpolated heights. Statistical evaluation was carried out using mean, RMS, and SD indicators, and the results were further analyzed across three terrain types: flat, foothill, and mountainous. The findings demonstrate that the regional models PL-quasi-geoid2021 and EGG2015 show positive shifts relative to GNSS/leveling, while global models present smaller biases that are positive in Poland and negative in Ukraine. Systematic differences between regional and global models reach up to 0.24 m, with RMS values in the range of 0.14–0.25 m and low standard deviations of 0.01–0.05 m, confirming the internal stability of global models. Spatial analysis highlights terrain-dependent variability: global models perform more consistently in flat and foothill areas, whereas mountainous zones are characterized by greater irregularities. Among the global solutions, SGG-UGM-2 and EIGEN6C4 provide the most stable performance across all terrain types. Overall, the results indicate that global gravity field models can be used as a geometric component for quasi-geoid construction in Ukraine, provided that local corrections are applied to account for systematic offsets.
Denker, H. (2015). A new European gravimetric (quasi) geoid EGG2015. Poster presented at XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG), Earth and Environmental Sciences for Future Generations, Prague, Czech Republic. https://www.isgeoid.polimi.it/Geoid/Europe/IUGG_2015_EGG2015.pdf
Fedorchuk, A. (2022). The potential application of the GNSS/leveling method in local areas by means of sector analysis. Geomatics and Environmental Engineering, 16(3), 41–55. https://doi.org/10.7494/geom.2022.16.3.41
Fedorchuk, A., Dzhuman, B., & Forostyna, M. (2025). Methodology for optimizing heights in the Amsterdam system based on regional and global geoid/quasi-geoid models. Geodesy and Geodynamics. https://doi.org/10.1016/j.geog.2025.04.010
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J., Schaller, T., Götze, H., et al. (2015). EIGEN 6C4: The latest combined global gravity field model including GOCE data up to degree & order 2190. International Centre for Global Earth Models (ICGEM). https://doi.org/10.5880/ICGEM.2015.1
Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2016). GECO: A global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228–247. https://doi.org/10.1007/s11200-015-1114-4
Główny Urząd Geodezji i Kartografii. (2021). Modele danych. http://www.gugik.gov.pl/__data/assets/text_file/0008/236546/Model_quasi_geoidy_PL_geoid2021_PL_EVRF2007_NH.txt
Head Office of Geodesy and Cartography. (2024). Opis techniczny obowiązującego modelu quasi geoidy PL geoid2021 w układzie PL EVRF2007 NH: Raport techniczny (in Polish). Warszawa, Poland. https://www.isgeoid.polimi.it/Geoid/Europe/Poland/TechnicalReportPL1_1.pdf
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth System Science Data, 11, 647–674. https://doi.org/10.5194/essd-11-647-2019
Liang, W., Li, J., Xu, X., Zhang, S., & Zhao, Y. (2020). A high-resolution Earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering, 6(8), 860–878. https://doi.org/10.1016/j.eng.2020.05.008
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008916
Reguzzoni, M., Carrion, D., De Gaetani, C. I., Albertella, A., Rossi, L., Sona, G., Batsukh, K., Toro Herrera, J. F., Elger, K., Barzaghi, R., & Sansó, F. (2021). Open access to regional geoid models: The International Service for the Geoid. Earth System Science Data, 13, 1653–1666. https://doi.org/10.5194/essd-13-1653-2021
Savchuk, S., Fedorchuk, A., & Marjanska, D. (2024). Modelling geoid height errors for local areas based on data of global models. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2024-0054
Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1–12. https://doi.org/10.1007/s00190-020-01398-0