Polyethylene Packages and Polyethylene Terephthalate Bottles - a Source of Precursors for Chemical Syntheses

Ecology and sustainable development. Environmental protection
4th International Scientific Conference «Chemical Technology and Engineering»: Proceedings – June 26–29th, 2023, Lviv, Ukraine – Lviv: Lviv Polytechnic National University, 2023, pp. 229–233

Authors

First and Last Name Academic degree E-mail Affiliation
Tetiana Tkachenko Ph.D. ttv13ttv [at] gmail.com V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Kyiv, Ukraine
Dmytro Kamenskyh Ph.D. kam.04 [at] ukr.net V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Kyiv, Ukraine
Vitalii Yevdokymenko Ph.D. vay.77 [at] ukr.net V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Kyiv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 30.03.2023 - 12:06
Abstract

The aim of our work was to investigate the possibility of obtaining precursors for chemical synthesis from polyethylene bags and polyethylene terephthalate bottles by two-stage thermolysis at 750 and 1000 oC. It was established that the main products are gases. During the thermolysis of polyethylene bags, the main combustible gases are C1-C3 and hydrogen, and the polyethylene terephthalate bottles are carbon oxides.

References

[1]     Verkhovna Rada of Ukraine (2021) About limiting the circulation of plastic bags in the territory of Ukraine. Retrieved from https://zakon.rada.gov.ua/laws/show/1489-20#Text.

[2]     IFC (2015) Solid household waste in Ukraine: DEVELOPMENT POTENTIAL. Scenarios of the development of the field of solid household waste management. Retrieved from https://www.ifc.org/wps/wcm/connect/region__ext_content/ifc_external_corporate_site/europe+and+central+asia/

resources/2015ukrmunicipalsolidwastedevelopmentpotential

[3]     Nyika, J., Dinka, M. (2022) Converting solid waste materials to Energy: A review. Materials Today: Proceedings, 57(2), 964-968.

[4]     Matsakas, L., Gao, Q., Jansson, S., Rova, U, & Christakopoulos, P. (2017) Green conversion of municipal solid wastes into fuels and chemicals Electronic Journal of Biotechnology, 26, 69-83. https://doi.org/10.1016/j.ejbt.2017.01.004.

[5]     Jina, K., Vozkab, P., Kilazb, G., Chenc, W.-T., & Wang, N.-H. L. (2020) Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP) Fuel, 273(1), 117726. https://doi.org/10.1016/j.fuel.2020.117726

[6]     Bora, R. R., Wang, R., & You, F. (2020) Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives ACS Sustainable Chem. Eng. 8(43), 16350-16363.

[7]     Pavluik, O.V., Baran, M.M., Kamenskyh, D.S., Tkachenko, T.V., & Yevdokymenko, V.A. (2022) Waste paper is an alternative source of valuable materials and substances. In M. S. Malʹovanoho (Eds.), Sustainable development: environmental protection. Energy saving. Balanced nature management (pp. 300-322). Kyiv: Yarochénko Ya.V. https://doi.org/10.51500/7826-23-0

[8]     Cheng, L., Jing, G, Yazhuo, W., Jun, Z., Haoran, Y., & Yong, C., (2020). Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis. Chemical Engineering Journal, 385, 123866. https://doi.org/10.1016/j.cej.2019.123866

[9]     Kai, J., Petr, V., Gozdem, K., Wan-Ting, C., & Nien-Hwa Linda, W., (2020). Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP). Fuel, 273, 117726. https://doi.org/10.1016/j.fuel.2020.117726

[10]   Wang, C., Lei, H., Qian, M., Huo, E., Zhao, Y., Zhang, Q., … Ruan, R. (2020). Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis. Sustainable Energy & Fuels, 4, 4614-4624. https://doi.org/10.1039/D0SE00652A

[11]   Jeong, Y.-S., Park, K.-B., & Kim, J.-S. (2020). Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon. Applied Energy, 262, 114495. https://doi.org/10.1016/j.apenergy.2020.114495

[12]   Choi, M.-J., Jeong, Y.-S., & Kim, J.-S. (2021). Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO. Energy, 223, 120122 https://doi.org/10.1016/j.energy.2021.120122

[13]   Baran, M.M., Himach. N.Yu., Tkachenko. T.V., Kamenskyh. D.S., Yevdokymenko. V.O. (2022) Methods of Mechanochemical Activation of Industrial Hydrogenation Catalysts of Carbon Oxides. Proceeding book of IV. International Agricultural, Biological & Life Science Conference AGBIOL 2022. Edirne, Turkey. 828-843.

Official paper