Considered aspects regarding by the need to solve the research and technical problem of providing information support for the assessment of the state of land resource mapping and their management using modern geoinformation technologies, the development and optimization of interconnected algorithms and programs. Used an integrated land cover classification method targeting low-accuracy regions on large-scale maps. Low-accuracy areas can be detected by estimating the accuracy of the data with a moderate resolution spectroradiometer. This method optimizes the entire classification process, including image selection, as well as the classification algorithm and features. An optimal algorithm of classification and features for various regions with low accuracy is proposed, which can be used in the process of regulation and management of land relations.
Kovalchuk, I. P. [2013]. Geo-informational and cartographic support for land resource management at the administrative district level. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatyuka. Ser.: Heohrafiya. № 2. P. 177-183. – URL: http://nbuv.gov.ua/UJRN/NZTNPUg_2013_2_26. (In Ukrainian).
Gong, P., Wang, J., Yu, L., Zhao, Y.C., Zhao, Y.Y., Liang, L., Niu, Z.G., Huang, X.M., Fu, H.H., Liu, S., et al. [2013]. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654. https://doi.org/10.1080/01431161.2012.748992
Zeng, T., Zhang, Z., Zhao, X., Wang, X., Zuo, L. [2015]. Evaluation of the 2010 MODIS Collection 5.1 Land Cover Type Product over China. Remote Sensing. 7(2): 1981-2006. https://doi.org/10.3390/rs70201981
Gomez, C., White, J.C., Wulder, M.A. [2016]. Optical remotely sensed time series data for land cover classification: A review, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 116, Pages 55-72, ISSN 0924-2716, https://doi.org/10.1016/j.isprsjprs.2016.03.008.
Hansen, M.C., Loveland, T.R. [2012]. A review of large area monitoring of land cover change using Landsat data, Remote Sensing of Environment, Volume 122, Pages 66-74, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2011.08.024.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P. [2012]. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sensing of Environment, Volume 120, Pages 25-36, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2011.11.026.
Lawrence, R.L., Moran, C.J. [2015]. The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection, Remote Sensing of Environment, Volume 170, , Pages 115-120, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2015.09.008.
Vynohradenko, S.O. [2021]. Crowdsourced cartography: use of open geospatial data. Mater. II Mizhnarodnoyi naukovo-tekhnichnoyi konfer. «Dorozhnyo-budivelnyy kompleks: problemy, perspektyvy, innovatsiyi», 11-12 lystopada 2021 r. Kh.: KHNADU, P. 101-106. – URL: https://www.researchgate.net/publication/357419294_KRAUDSORSINGOVA_KARTOGRAFIA_VIKORISTANNA_VIDKRITIH_GEOPROSTOROVIH_DANIH. (In Ukrainian).