Method for determining the location of a radiation source

Land Cover Mapping & UAV

Authors

First and Last Name Academic degree E-mail Affiliation
Vsevolod Burachek Sc.D. vbur2008 [at] ukr.net University of emerging technologies
Kyiv, Ukraine
Sergiy Kryachok Ph.D. geodesist2015 [at] gmail.com Scientific Institute of Architecture, Design and Geodesy, Chernihiv Polytechnic National University
Chernihiv, Ukraine
Vadym Belenok Ph.D. belenok.vadim [at] nau.edu.ua National Aviation University
Kyiv, Ukraine

I and my co-authors (if any) authorize the use of the Paper in accordance with the Creative Commons CC BY license

First published on this website: 21.08.2023 - 23:42
Abstract 

The theoretical justification and technology of using the method for determining the location of a radiation source are presented.  The method is based on fixing the maximum radiation power measured on adjacent UAV trajectories and calculating the location of the radiation source at the ground control station based on the coordinates of these maximums. Implementation of the method requires simple hardware and software compared to analogues.

References 
  1. Adão T., Hruška J., Pádua L., Bessa J., Peres E., Morais R., Sousa J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9 (11), 1110. https://doi.org/10.3390/rs9111110
  2. Burtniak V., Zabulonov Y., Stokolos M., Bulavin L., Krasnoholovet V. (2018). Application of a territorial remote radiation monitoring system at the Chornobyl nuclear accident site. Journal of Applied Remote Sensing, 12 (4), 046007. https://doi.org/10.1117/1.JRS.12.046007
  3. Glotov V.M., Gunina A.V. (2016). Analysis of modern surveying methods during the processing of large-scale plans. Geodesy, cartography and aerial survey, 83, 53-63.
  4. Haase P. Tonkin J. D. Stoll S., Burkhard B., Frenzel M, Geijzendorffer I. R., Hauser C., Klotz S., Kuhn I., McDowell W. H., et al. (2018). The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 613-614, 1376-1384. https://doi.org/10.1016/j.scitotenv.2017.08.111
  5. Hunt E.R., Daughtry C.S. (2018). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39 (15-16), 5345–5376. https://doi.org/10.1080/01431161.2017.1410300
  6. Kalamkar R. B., Ahire M. C., Ghadge P. A., Dhenge S. A., Anarase M. S.  (2020). Drone and its Applications in Agriculture. Int. J. Curr. Microbiol. App. Sci., 9 (6), 3022-3026. https://doi.org/10.20546/ijcmas.2020.906.363
  7. Kovalenko I.I., Korinets G.O., Kryachok S.D., Tereshchuk O.I. Mapping system for the of the territory of radiation contamination. Patent for utility model No. 151341, Ukraine, 01T 1/16, G01T 1/29, B64C 39/02. Decl. 27.01.2022; Publ. 06.07.2022; Bulletin No. 27. 6 p. (in Ukrainian).
  8. Popov M. O., Stankevich S. A., Mosov S. P., Titarenko O. V., Dugin S. S., Golubov S. I., Andreiev A. A. (2022). Method for Minefields Mapping by Imagery from Unmanned Aerial Vehicle. (2022). Advances in Military Technology, 17 (2), 211-229. https://doi.org/10.3849/aimt.01722