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Abstract – Cryptography is the most standard and efficient 
way to protect the security of data transactions. An efficient 
cryptosystem must be one that is strong enough to ensure a 
high level of security for reliable transmission of information. 
Elliptic curve cryptography is one such type of public key and 
private key cryptosystem based on small key size with high 
efficient speed up of cryptography process. Elliptic curve 
cryptography is an alternative to traditional techniques for 
public key cryptography. It can be called the future generation 
of public key systems since it involves less number of bits 
suitable for resource constrained and wireless applications 
without compromising on the security level. The proposed 
architecture for elliptic curve scalar is based on Point 
multiplication algorithm. It was also generated (Extension 
Field) assimilation by EF(387) where GF(2173)& EF(387) fields 
have approximately the same number of elements, and results 
were compared and implemented.  
Кеу words – Galois field GF(2n), Extension Field EF(pm)  , 

Elliptic Curve Cryptography, Digital Signature, Operational unit 
For scalar multiplication . 

I. Introduction  
This work introduces elliptic curve Cryptography 

Digital Signature over Operational Unit architectures 
designed to take advantage of the features offered by 
reprogrammable hardware, in particular field 
programmable gate array (FPGA) hardware. 

The first elliptic curve cryptosystems were independently 
proposed in 1985 by Neil Koblitz and Victor Miller. Since its 
inception, elliptic curve cryptography has been the subject of 
extensive cryptanalysis. 

Today, elliptic curve cryptosystems are being for 
deemed secure for commercial as well as Government 
use. Based on today's cryptanalytic knowledge, elliptic 
curve cryptosystems offer security comparable to that of 
traditional public-key cryptosystems. 

II. Design HW Operational unit ECDSA 
This section specifies an arithmetic unit architecture for 

GF(2173) arithmetic and GF(pm) arithmetic. The main 
components of the arithmetic unit are a multiplier, 
inversion and adder, also a register file, and a zero test 
circuit. The multiplier is used to compute multiplications 
and squares. The adder is used to compute additions and 
subtractions over GF(2173).The inversion is used to 
compute division. The GF(pm) arithmetic unit introduced 
here is based on a new range level of 173 bits where used 
prime (3) and m (87) for architecture arithmetic unit 
introduced here as work develops to GF(2173)architecture.  

The elliptic curve processor architectures is in fig.1 
introduced in this work. In this figure, the elliptic curve 
processor is composed by an arithmetic unit and two 
programmable processors the main controller and the 
arithmetic unit controller. 

Main Controller (MC): The MC is a reduced instruction 
set processor, Fig.2. The MC is responsible for 
orchestrating the point multiplication process. In the 
computation of a point multiplication is using mixed or 
projective coordinates. 
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Fig. 1. Operation unit for ECDSA architecture 
 
Arithmetic Unit Controller (AUC): The AUC is a reduced 

instruction set processor, fig.3. The AUC is responsible for 
processing MC commands. The AUC processes MC 
commands by guiding the AU through the computation of 
the necessary field arithmetic operations. In the computation 
of point multiplications, the AUC is responsible for guiding 
the AU in the computation of point additions, point 
subtractions, point doubles, coordinate conversions, 
multiplication and field inversions. 

Arithmetic Unit (AU): The AU is the main processing 
engine of an elliptic curve processor. The AU 
performance dictates the performance of the elliptic curve 
processor. For high performance elliptic curve processors, 
the AU complexity also dictates the complexity of the 
elliptic curve processor, because for these 
implementations the aggregate complexity of the MC and 
the AUC is low in comparison with the complexity of the 
AU. The AU is responsible for performing field additions, 
subtractions, multiplications, inversion, and comparisons 
of finite field elements. The AU is also responsible for 
storing elliptic curve parameters, precomputed values, 
and temporary values. Fig. 4 shows a functional diagram 
of an AU. The adder, subtracted, multiplier, and inversion 
functional blocks represent the arithmetic functions 
performed by the AU. The zero test function (Reset) is 
using in the comparison of finite field elements. 
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Fig. 2. Main controller (MC) 
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Fig. 3. Arithmetic unit controller (AUC) 
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Fig. 4. Block diagram of the arithmetic unit 

III. ECC Operations Hierarchy 
Protocol Elliptic Curve Digital Signature Algorithm 

(ECDSA) is the number of mathematical operations 
hierarchy associated with the control unit according to the 
rules of the algorithm ECDSA, fig.5. 
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Fig. 5. ECC Operations Hierarchy 

 
There are 4 levels in Fig.5. First level is basic Galois 

Field operations.GF addition, GF subtraction, GF 
multiplication, GF inversion. Second level is Elliptic 
Curve point operations or Scalar Point Multiplication. 
Add, Point Double, Arithmetic unit control level. Third 
Level is Elliptic Curve point operation level for the 
fundamental and most time-consuming operation, also it 
is Main control unit. Fourth Level is ECC protocol 
ECDSA level. 
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IV.  Operations unit of GF(2173)  
Generally, there are important arithmetic operations 

over the binary Galois Field GF(2173), which includes 
addition, multiplication and inversion with represent 
polynomial base with irreducible binary polynomials 
f(x)= x173 

+ x8 
+ x5 

+ x2
+1 over GF(2173).  

Addition and Subtraction: The addition and subtraction 
operations in finite field binary arithmetic are simple 
XOR operation. 

Multiplication: The multiplication of GF(2173) finite 
fields elements A(x), B(x) can be performed in many ways 
as [1],[2] also we can use two type polynomial and 
normal base as [3] that implemented GF(2521). 
Montgomery Multiplier implemented as shown [4] but in 
this work   we use LSB-first algorithm which computes 
c(x) = a(x).b(x) mod f(x) where f(x) is the irreducible 
polynomial of the field, as shown Fig.6.  
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Fig. 6. Interleaved multiplier, computation of  
c(x) +bi . R(x); R(x).x mod f(x) 

 
Division: it is the most time consuming operation in 

Galois field, Fig.7 because it has a multiplicative inverse 
as following: z(x) =g(x). h(x)-1 mod f(x); Where h(x)-1   = 
1/h(x) is a multiplicative inverse. If  g(x)=1  then z(x) 
inversion to h(x). 

EC point operations over GF(2173): Denote the elliptic 
curve over GF(2173) such that  y2 

+ xy  
= x3 

+ ax2
+ b over 

GF(2173) together with a point O, called the point infinity.  
Point addition and doubling: Point doubling can be 

substituted by multiplication, over the finite field is 
constituted by the multiplication that done in the field 
arithmetic. Point addition is carried out in the field 
arithmetic. Let f(x)= x173 

+ x8 
+ x5 

+ x2
+1 irreducible 

polynomial and P(x1,y1); Q(x2,y2) are points in GF(2173) as 
shown [5].  

Point addition: P+Q=(x3, y3); 

x3 =2++x1+x2+a                            (1) 

y3 =(x1 +x3) + x3+ y1                                      (2) 

 = (y1+y2) /(x1+ x2)                         (3) 

and point doubling: 2P=(x3, y3); 

x3 =2++a                                (4) 

y3 =x1
2 +  x3+ x3                                         (5) 

 = x1 +y1/ x1                              (6) 
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Fig. 7. Binary algorithm for polynomials division 

V.  Digit Size 
After design and implementation Elliptic Curve Galois 

Field over GF(2173) we can develop this work from the 
binary fields to extension fields to compare results and 
choose the best as Fig.8. 

 

1       00100101101001101011100110110011   

000100100101 100110110011 101001101011 

d d d 

 
Fig. 8. Representation of large integers 
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VI.  Operations unit over GF(pm) 
This operation is similar to Galois Field over GF (2173), 

but different only in addition operation because the 
addition and subtraction have now different results. 
Therefore we need to implement subtraction into 
Arithmetic unit AU. Table 1 shows irreducible 
polynomial over GF(pm). 

TABLE 1 
IRREDUCIBLE POLYNOMIAL OVER (pm

 )  

GF(pm) Irreducible Polynomial over GF(pm) 
GF(2173) f(x)= x173 

+ x8 
+ x5 

+ x2
+1 

GF(387) f(x)= x87 
+ x26 

+ 1 

 
Addition and Subtraction over GF(pm): The addition of 

two elements a and b in GF(pm) is performed by adding 
the polynomials a(x) and b(x) mod f(x). The coefficients 
are added in the field GF(p). The subtraction of two 
elements a and b in GF(pm) is performed by subtracting 
the polynomials a(x) and b(x), where the coefficients are 
subtracted in the field GF(p).Hardware finite field 
addition module p is the most important part because all 
finite field depending on it. The addition field consist of : 
(3*m) register of d bits (a reg., b reg.)= (s reg.), MUX, 
adder and comparator with p. Hardware finite field 
subtraction is similar to addition with bi  complement or ai 
complement. 

Multiplication over GF(pm): This work will use array type 
LSE-first serial multiplier .Therefore, two registers c(), R() 
are needed to store intermediate values. Since the degrees of 
(i. B() mod f()) are m-1 and m respectively, the modular 
reduction can be computed by only one subtraction. In 
general, the reduction is achieved by interleaved methods 
because non-interleaved methods require a lot of hardware 
resource. A basic method to implement a multiplication for 
GF(pm) is a shift-and-add method.  

The MOD unit in Fig. 9 is a part which computes  
R() = . R( )mod f() . 
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Fig. 9. MOD unit multiplier 

Since the critical path of the MSE-first serial multiplier 
depends on the ADD unit and the MOD unit, the time 
delay is m MUL and 2m  ADD, where MUL and ADD 
refer to GF (p)   multiplier and adder, respectively. For 
area complexity, m MUL at MUL unit, m ADD at ADD 
unit, and 2 MUL+1 ADD at MOD unite are required 
respectively. Therefore the total area complexity is  
(m + 2) MUL + (m + 1) ADD. As shown Fig.10. 

Division: The inversion is a complex operation that is 
computed in (kP) operation. In this work we will select 
the square and multiply algorithm to perform inversion 
over GF(pm). To apply this algorithm, the multiplicative 
inverse of the field element A can be obtain by recursive 
squaring and multiplication. The inversion operation is 
divided in three steps for one register: initialization 
operation, iteration of the squaring and multiplication, and 
finally the result. See Fig.11.  

EC point operations over GF(pm): An elliptic curve E 
that is define on a field p is expressed with the solutions 
of the Weierstrass equation and the point at infinity. 
General form of this equation given as follows: 

y2+a1xy+a3y=x3+a2x
2+a4x+a6 . Let P(x1,y1); Q(x2,y2) are 

points in EF(pm) as shown [6], point addition:  
P+Q=(x3, y3);and point doubling: 2P=(x3, y3). 

 In this work, an elliptic curve over GF(pm) is given by  
E:y2=x3+Ax+B. Where A,B GF(pm) and 4A3+27B2 ≠0. 

The important operation is scaler multiplication as shown 
[7] where presented the total time to all operations (point 
adding, point doubling and arithmetic unit operations). 
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Fig.10. LSE-first serial multiplier for  GF (pm) 
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VII.  Implementation and Results 
In this work  GF(2173) numbers are 173 bits wide and 

checking of results is very bulky. In this matter, similar 
input/output have been written to the VHDL programming, 
in order to compare the execution steps, as well as the final 
results, timing is not taken into consideration in this specific 
stage for each field degree m, a pseudo-random curve is 
given, along with a Koblitz curve. 

The pseudo-random curve has the form E: y2+xy = 
x3+x2+b;  a random curve over x3 is denoted by _m. The 
Koblitz curve has the form Ea: y

2+xy = x3+ax2+1; where a= 0 
or 1.For each pseudorandom curve, the cofactor is h = 2. The 
cofactor of each Koblitz curve is h = 2 if a = 1, and h = 4 if a 
= 0. A Koblitz curve over x3 is denoted by k_m. 

EC point doubling and EC point adding in Tables 2, 3. 
The results of arithmetic unit in Table 4. The results of 
compared to GF (2233, 2173, 2163) in Table 5.The results of 
point multiplications in Table 6. 
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Fig. 11. Square and multiply for inversion  GF(pm) 
 

TABLE 2 
EC POINT DOUBLING 

Operation 
name 

Operation 
number 

Clock 
Cycles 

INV 1 346 
MUL 3-1 synch. 346 
ADD 3 3 
---- ---- 695 

Total Time EC point doubling = 69500 ns +delay. 

TABLE 3 
EC POINT ADDITION 

Operation  
name 

Operation  
number 

Clock  
Cycles 

INV 1 346 
MUL 2 346 
ADD 6-1 synch. 5 
---- ---- 697 

Total Time EC point adding = 69700 ns +delay. 
 

TABLE 4 
RESULTS AU  

FF-Level Operation Clock Cycles 
FF-Mult. 173 
FF-Add. 1 
FF-inver. 346 

 
TABLE 5 

GF(2233,2173,2163) 

GF Operation 
MAX _Frequency 

 
136.323MHz 

 
142.857 MHz  

 
169.477MHz 

 
TABLE 6 

RESULTS SCALAR MULTIPLICATION 

Operation Clock Cycles 
EC-Double 695 
EC-Add 697 
k·P 121,100 
Time( k·P) 12,110,000 ns 

Conclusions 
This work introduces elliptic curve processor 

architectures suitable for the computation of point 
multiplications for curves defined over fields  GF(2n) and 
fields GF(pm) where (n=173 bit and digits), (m= 87 digits) 
and (174 bits because p is prime and consist of 2 bits). 
The work presented here concentrated on the 
development of a high performance elliptic curve 
processor for the computation of point multiplications for 
curves defined over fields  GF(pm).This work compared 
prototyped implementations of elliptic curve processors 
suitable for the computation of point multiplications for 
curves defined over fields GF(2n)  and curves defined 
over fields  GF(pm).  

This work compared prototyped implementations of 
elliptic curve processors suitable for the computation of 
point multiplications for curves defined over fields  
GF(2n) and curves defined over fields  GF(pm). 

In summary, this work defines elliptic curve processor 
architectures suitable for the computation of point 
multiplications for curves defined over fields  GF(2n)  and 
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curves defined over fields GF(pm). These architectures are 
well suited for implementation in FPGAs, as it was 
proved with prototyped implementations: the fastest 
prototyped  GF(2n) processor can compute an arbitrary 
point multiplication for curves defined over fields  
GF(2173) is 12,110,000 nanoseconds and the maximum 
frequency F ≥100 MHz = 142.85714 MHz. The 
programmability of the processors allows them to 
incorporate new point multiplication algorithms without 
the need for reconfiguration. The wide range of time-area 
options presented for the different processors allows 
designers to tailor the presented architectures according to 
their cost-performance goals. The optimization of the 
processor architectures for FPGA technology allows 
implementations to evolve with advancements in FPGA 
technology; for example, as FPGAs become faster, 
processor implementations ported to faster FPGAs will 
achieve higher performance. In addition, as the densities 
of FPGAs increase the ability to develop faster processors 
increases. Finally, FPGA's re-configurability allows 
designers to use optimized point multiplication processors 
for different finite fields. 
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