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A mathematical model, a numerical method, and the calculations results of the heat and mass transfer 

dynamics and phase transformations in the processes of continuous drying dispersed materials are 

presented. The calculation of continuous drying a chopped wood was carried out. The calculation results 

testify to the adequacy of the mathematical model and the efficiency of the calculation method. 
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Introduction 

Drying processes are an integral part of most production technologies in the energy, 

chemical, food, construction, paper, pharmaceutical and other industries. The trend of modern 

production processes is the introduction of continuous automated technological cycles, in which it 

is advisable to use continuous dryers. When developing effective modes of continuous drying, it 

is important to have the results of the dynamics of heat and mass transfer in a porous material, 

taking into account changes in the parameters of the coolant along the length of the drying 

chamber. If a dispersed porous material is to be dried, then the dispersion characteristics of the wet 

layer should be taken into account. The method of mathematical modeling makes it possible to 

solve these problems. In [1], for the first time, a mathematical model was built and a numerical 

method was developed for calculating the dynamics of heat and mass transfer and phase 

transformations during the dehydration of consolidated capillary-porous materials in continuous 

convective dryers. In [2], shrinkage was taken into account during continuous drying of colloidal 

capillary-porous materials. In this paper, a mathematical model of the dynamics of continuous 

convective drying of dispersed capillary-porous materials is presented. 

Results and discussion 

The wet dispersed layer can be considered as a multicomponent heterogeneous system, 

including the skeleton, liquid, and gas-vapor mixture. When constructing a mathematical model 

of the dynamics of drying a dispersed layer, it was assumed that the liquid phase moves only in 

the particle capillaries, while vaporous moisture moves along the particle capillaries and in the 

space between them. The system of equations was built on the basis the differential equation of 

substance transfer W (energy, mass, momentum) [1] 
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where w – speed of substance movement, += www L , where wL – speed of conveyor belt, wψ 

– filtration speed of substance's components (liquid  = fl, vapor  = v, air  = ai) relative to its 

skeleton; jW – substance fluence rate W; ІW – power of internal sources of the substance; V – 

relative volumetric strain. Transfer of the substance W is carried out by diffusion and filtration: 
d f

W W W= +j j j . In the steady state operation of the dryer: W/t = 0, V /t = 0 and wL = const. 
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When the filtration transfer of the substance takes place, the components  move relative to 

the body's skeleton with the speed wψ, and relative to the body of the apparatus with the speed w. 

For this case, equation (1) can be written as  
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At moderate temperature conditions of drying, heat and mass transfer in the dispersed layer 

is carried out by diffusion. Then wψ = 0 and (1) takes the form 

  ( )div ε
1 ε

L W W L V

V

W
W I = − + − 

+
w j w .                                    (3) 

Usually, the width and length of the tape is much greater than the height of the layer of 

material on it. In the Cartesian coordinate system, where the x-axis is perpendicular to the working 

surface of the belt, and the z-axis is parallel to the wL vector, Equations (2), (3) can be simplified. 

Then the mathematical model for the case of continuous diffusion drying of a layer of a dispersed 

colloidal capillary-porous body 
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where Ufl, Uv – volume concentrations of liquid and steam; λеf = λbb + λflfl + (λv + λai)g; 

сеf=сbρb(1–П)(1–εla)+сflUfl+сvUv+сaiaig  – effective thermal conductivity and heat capacity of 

the dispersed layer; where, the volume fractions of the body b=(1–П)(1–εla), liquid fl = Ufl/fl 

and gas g=1–b–fl in the dispersed layer, П – material porosity; εla – layer porosity; L – is the 

heat of vaporization; еhe relative volume deformation εV is based on the differential equation of 

the thermal-concentration deformation [1]. The diffusion coefficients of the liquid and gas phases 

is determined by the formulas: ( ) 1
fl [exp / 1]D DD A RT −= −  [3], 3/2

v v v/D T P=  [4], where R – 

universal gas constant, АD – activation energy, Pg – gas phase pressure, γDfl , γDv = Const.  

To determine the effect of the porosity εla on the desired functions and the intensity of 

evaporation ІW, the control volume ΔV, which includes one particle, is considered. If the number 

of particles in a unit volume of np, then the average value of the control volume ΔV=1/np, and the 

average volume of the particle Vp = ΔV (1 – εla). In this case, relations were found for the volume 

concentrations of the components of the dispersed layer: ( )a
pa

fl lfl
r 1 εU U= − , par

v v v laρ εU U= − , 

ai ai gρU =  .        

The average area of the outer surface of the particle is determined by its effective size. The 

intensity of the phase transition in a unit volume of the dispersed layer is represented by [5] 

( )
1

с b p p laγ exp / 1 (φ φ)[ (1 ε ) ]VI A RT S n S
−

= − − + −   ,     4/*flc = =const                   (7)  

where the contact surface area of the liquid and vapor phases consists of the outer Sp and the inner 

S [1] surfaces of the particle; φb, φ is the humidity of the body and steam in the pores of the layer; 

A – activation energy; ε is the radiation coefficient; fl is the density of the liquid; δ* –thickness 

of the condensate layer in which the evaporation process takes place; the value */=  is found 

from the conditions: for *0  and 1=  with  > *, e.m.δ=δ*(1 1 φ )− −  the thickness of 



 

the condensate layer (formula Nikitenko N.I. [5]); А is the activation energy. This expression 

follows under the condition of local thermodynamic equilibrium of phases from the formula 

Nikitenko [1] for the intensity of liquid evaporation from the free surface of the condensed layer 
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φe.m. medium's relative humidity, 
e.m. v eqφ /P P= , Pv vapor partial pressure, Peq saturation pressure.  

At the entrance to the drying chamber, all parameters of the coolant are known. To determine 

the average values of temperature Te.m., pressure Рe.m, volumetric concentrations of steam Uv,e.m 

and air Uai,,e.m in the drying agent in section z along the length of the channel, the elementary 

volume dV= Se.mdz was considered, where the cross-sectional of a channel Se.m = XY, in contact 

with the drying agent. The change pressure dРe.m in section z from the Bernoulli equation for the 

gas flow in the channel, without taking into account local resistances is determined: 
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The average temperature Te.m over the z is determined from the energy balance equation for dV: 
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where e.m v,e.m v ai,e.m ai e.m( ) [ ( ) ( ) ] ( )q z G z c G z c T z= + . The average speed wa.m(z) of the drying agent in 

accordance with the equations of state and continuity for steam and air 
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Change in the flow rate of air and vapor of the agent through the z from the mass balance equations 

ai,e.m ai,e.m ai ai,e.m г( ) / γ ρ ( , ) ρ ( )dG z dz z X z Y = −   , v,e.m v,e.m v v,e.m g( ) / γ ρ ( , ) ρ ( )dG z dz z X z Y = −   ,    

where are the partial densities of vapor and air in the drying agent v,e.m v,e.mρ U= , ai,e.m ai,e.mρ U= . 

The total consumption of material m0G at the channel inlet (z=0) in accordance with the continuity 

equation, assuming that m mS X Y=  is the cross-sectional area of the material layer, is equal to 

m0 b0 fl0 v0 ai0 m b0 fl0 v0 ai0( )LG G G G G w S U U U U= + + + = + + + , and the total consumption of material 

m ( )G z through z: m m b fl v ai( ) [ ( ) ( ) ( ) ( )]LG z w S U z U z U z U z= + + + , where )(zU – average value of 

the volumetric concentration of the component ψ (ψ = b, fl, v, ai) wet material  by section Sm.  For 

a channel with impermeable walls: 
m e.m m0 e.m0( ) ( )G z G z G G const+ = + = . In this case, the consumption 

of steam of the drying agent through the section z of the channel according to the mass balance 

equation: 
v,e.m e.m e.m v,e.m m0 e.m0 m ai,e.m( ) ρ ( ) ( ) ( )G z w S z G G G z G z= = + − − . Densities ρv,e.m , ρai,e.m from the 

continuity equations:  v,e.m v e.m e.mρ ( ) ( ) / ( )z G z w z S= ,  ai,e.m ai e.m e.mρ ( ) ( ) / ( )z G z w z S= , pressures Pпс, Pвс 

from the state equations: 
v,e.m v,e.m e.m v( ) ρ ( ) ( ) / μP z R z T z= , 

ai,e.m ai,e.m e.m ai( ) ρ ( ) ( ) / μP z R z T z= . 

The conditions of heat and mass transfer at the boundary x = Xm of the contact between the 

layer of material being dried and the drying agent for system (4) – (6) are written as follows   
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where 
0=

T – temperature at the layer surface. 



 

The solution of differential equations (4) - (6) under conditions (7) - (14) was performed by a 

numerical method based on a three-layer explicit difference scheme Nikitenko N.I. [1] and 

algorithm splitting procedures for physical factors. As an example, a thin layer of Xm=5,6 mm, П 

= 0,585, εla = 0,65 of crushed energy willow was considered, which was blown with a drying agent 

with initial parameters Te.m0 = 200 °С, Pe.m0 = 103 kPa, Pve.m0 = 1,6 kPa, we.m0 = 4,5 m/s, Ge.m0 = 8 

kg/s. The calculation results are presented in Fig.1. 

 
Fig. 1 Change in time of average moisture content W and temperature T of the layer of energy 

willow particles, as well as coolant temperature Tc, partial vapor pressure Pvc and relative humidity 

Fic during drying in a belt dryer. Drying time t=z/wL , where the tape speed wL = 0,005 m/s. 

Conclusion  

The values of the parameters of the coolant in each section z along the length of the channel 

are related to each other as in the diagram of the state of moist air. This testifies to the adequacy 

of the proposed approach to the calculation of the continuous drying process. As can be seen from 

the figure, the drying agent cools and moistens rather quickly, which significantly slows down the 

process of the material reaching equilibrium moisture content. In some cases, it is not possible to 

dry the material to a low moisture content in a continuous convective drying unit without additional 

heating and drying of the drying agent. 
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