## Cd<sub>x</sub>Zn<sub>1-x</sub>S and Cd<sub>x</sub>Hg<sub>1-x</sub>Se Thin Films Solid Solutions

## Martyn Sozanskyi, Vitalii Stadnik, Ruslana Guminilovych, Pavlo Shapoval, Marta Laruk, Yosyp Yatchyshyn

Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, UKRAINE, Lviv, S. Bandera Street 12, E-mail: martyn.a.sozanskyi@lpnu.ua



## **Deposition conditions**

The chemical bath deposition (CBD) of solid solution thin films of  $Cd_xZn_{1-x}S$  was conducted with the initial working solution, which was consisted of  $ZnCl_2$ ,  $CdCl_2$ , complexing agent,  $(NH_2)_2CS$  and pH-regulator. As complexing agent for zinc and cadmium was used –  $Na_3C_6H_5O_7$ ; the pH-regulator –  $NH_4OH$ . The concentration of the  $ZnCl_2$  in the working solution was equal to 0.08 M;  $CdCl_2 - 0.004$  M;  $Na_3C_6H_5O_7 - 0.08$  M;  $(NH_2)_2CS - 0.25$  M;  $NH_4OH - 0.10$  M.

The CBD of solid solution thin films of  $Cd_xHg_{1-x}Se$  was conducted with the initial working solution, which was consisted of  $Hg(NO_3)_2$ , cadmium nitrate  $(Cd(NO_3)_2)$ , complexing agent,  $Na_2SeSO_3$  and pH-regulator. As complexing agent for cadmium and mercury was used –  $Na_2S_2O_3$ ); the pH-regulator –  $Na_3C_6H_5O_7$ . The concentration of the  $Hg(NO_3)_2$  in the working solution was equal to 0.005~M;  $Cd(NO_3)_2 - 0.05~M$ ;  $Na_2S_2O_3 - 1.0~M$ ;  $Na_2SeSO_3 - 0.05~M$ ;  $Na_3C_6H_5O_7 - 1.0~M$ .

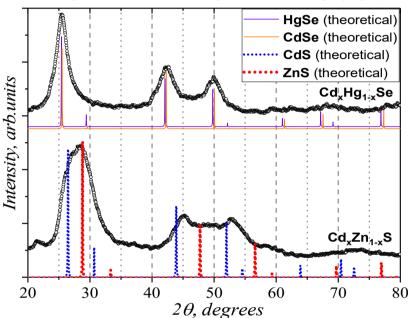



Fig 1. X-ray diffractograms of  $Cd_xZn_{1-x}S$  and  $Cd_xHg_{1-x}Se$  films, and their comparison with the lines of the theoretical diffraction patterns of ZnS, CdS, CdSe, and HgSe.

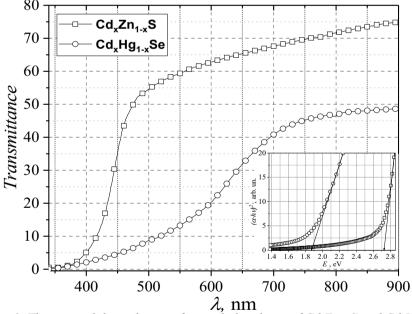
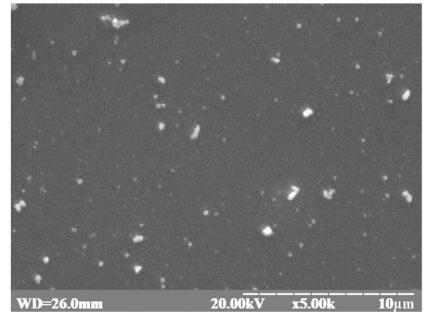




Fig. 3. The spectral dependences of optical absorbtion of  $Cd_xZn_{1-x}S$  and  $Cd_xHg_{1-x}Se$  films (inset  $-(\alpha \cdot hv)^2$  vs. hv dependense)



## 

solid solutions was investigated by X-ray powder diffraction (diffractometer DRON-3.0, CuKα radiation). Primary processing of the experimental diffraction data in order to identify the phases was made using the PowderCell program [1]. Optimum exposure for each of the samples was selected. Absorption optical spectra of the Cd<sub>x</sub>Zn<sub>1-x</sub>S and Cd<sub>x</sub>Hg<sub>1-x</sub>Se films were obtained with a spectrophotometer XION 500 (Dr.Lange). A comparative signal was passed through glass substrates identical to the substrates, used for investigated films. The investigation of surface morphology of the films samples was carried out using a raster electron microscope REM-106Y.

Elemental analysis of films was carried out on an X-ray

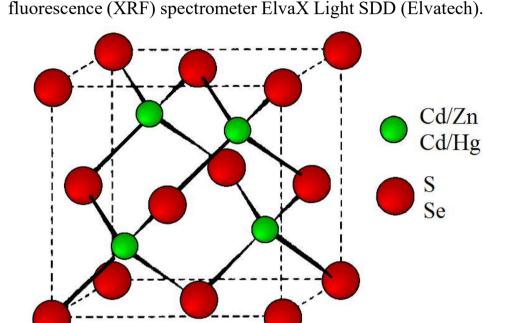



Fig 2. The unit cell of cubic sphalerite structure of  $Cd_xZn_{1-x}S$  and  $Cd_xHg_{1-x}Se$  films phases

Table 1. Results of microanalysis of thin films solid solutions

| Film              | Component | Weight % | Atomic % |
|-------------------|-----------|----------|----------|
| $Cd_{x}Zn_{1-x}S$ | Cd        | 60.62    | 35.35    |
|                   | Zn        | 15.20    | 15.24    |
|                   | S         | 24.18    | 49.43    |
| $Cd_xHg_{1-x}Se$  | Cd        | 25.96    | 25.01    |
|                   | Hg        | 31.95    | 17.25    |
|                   | Se        | 42.09    | 57.74    |

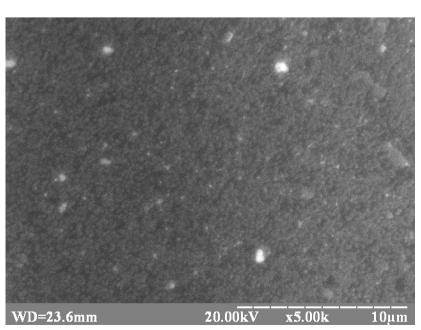



Fig.4 Surface morphology of  $Cd_xZn_{1-x}S$  (left) and  $Cd_xHg_{1-x}Se$  (right) films